Artefacts from a Prehistoric Cemetery and Settlement in Anwick Fen, Lincolnshire

Peter Chowne and Frances Healy

During 1975 and 1976, as part of survey work carried out in the Lincolnshire fens, Brian Simmons recorded the presence of soil marks on vertical aerial photographs in the parish of Anwick (TF 133497). These marks were provisionally interpreted as round barrows protruding through a layer of peat. To confirm the nature of the site a survey of one of the fields was undertaken by the South Lincolnshire Archaeological Unit. This report is concerned with the artefacts recovered from the field.

THE SITE

The site lies in the Slea valley at a point where the river leaves the fen margin gravels and enters the peat fen (Figs. 1, 2). Canalisation has altered the course of the Slea to such an extent that the present river bears little resemblance to its ancient predecessor. In 1794 an Act of Parliament was passed permitting the widening of the Slea and the construction of two locks.¹ Hallam suggests that Gilbert de Umfraville, Earl of Angus, may have been responsible for the construction at some time before 1342 of the obviously artificial part of the Slea which runs through North and South Kyme to Dogdyke.² One kilometre west of the site an old course of the Slea is visible in Haverholme Park (Fig. 2), where a religious

house founded before 1123 had been located. The priory is, effectively, on an island between the old course of the Slea and a later channel to the north. An extinct prehistoric river can be seen on aerial photographs1 as a soilmark meandering out into the fen and eventually disappearing under the peat of the Witham valley. A radiocarbon date of 590 ± 100 B.C. (HAR-3362) obtained from peat overlying a barrow cemetery in Walcott, three kilometres north of the Anwick site,4 suggests that most of the peat was probably deposited in the later part of the Bronze Age.

but most pieces are both abraded and patinated, the patina at its thickest being thick and white. It was clear from the start that at least two periods of flint-working were represented, both from the presence of fresh flake-scars cutting through patination (e.g. on F11 and F12), and from the presence of such chronologically disparate types as microliths and related forms (F21-F22) on the one hand and a barbed and tanged arrowhead (F34) on the other. It was less clear how far the overall composition of the collection might be interpreted and how far the incidence of patination might serve to distinguish different components within it. The collection is here described and examined with a view to investigating these questions.

Six barrows could be seen in the surveyed field, and a further three were visible in the surrounding area (Fig. 3). The barrows are on a ridge of sandy peat adjacent to an extinct course of the Slea. In the northen part of the field another extinct watercourse was visible; aerial photographs indicate that this was a tributary of the Slea. Since the survey was carried out in 1976 a reservoir has been constructed destroying part of this channel.

THE ARTEFACTS

Fieldwalking led to the recovery of 1,362 artefacts, most of which were found on or around the barrows. The collection consists of one very abraded pottery sherd; 10 pot-boilers, nine of flint and one probably of limestone; two flint hammerstone fragments; 63 flint cores; 1,180 flint flakes; 79 retouched and 27 possibly retouched pieces. The pieces discussed are illustrated in Figs. 7–9.

The illustrated flakes and flake tools are drawn dorsal face uppermost, except where retouch is exclusively inverse or where both faces are shown and with the striking platform at the base.

CONDITION, COMPOSITION AND RAW MATERIAL

Some of the struck flint in the collection is relatively fresh, but most pieces are both abraded and patinated, the patina at its thickest being thick and white. It was clear from the start that at least two periods of flint-working were represented, both from the presence of fresh flake-scars cutting through patination (e.g. on F11 and F12), and from the presence of such chronologically disparate types as microliths and related forms (F21-F22) on the one hand and a barbed and tanged arrowhead (F34) on the other. It was less clear how far the overall composition of the collection might be interpreted and how far the incidence of patination might serve to distinguish different components within it. The collection is here described and examined with a view to investigating these questions.

The flint used seems to have been derived from gravel deposits and consists of small, rolled nodules and pebbles of varied colours and quality, most of them brown or light to dark grey. Several pieces show pre-existing thermal fractures (e.g. F3, F36, F64). The possible source of the single stone flake (S1) is discussed below.

DEBITAGE

Cores

The cores are classified according to the scheme used for the industry from Hurst Fen, Suffolk:

A1 1 platform flaked all around
A2 1 platform flaked part way around (e.g. F1, F2)
B1 2 parallel platforms (e.g. F3)
B2 2 platforms, 1 at an oblique angle
B3 2 platforms at right-angles (e.g. F5, F6)
C 3 or more platforms (e.g. F7, F8)
D Keeled, with flakes struck from two directions (e.g. F9, F10)
E Keeled, but with one platform or more
F10 has a slight trace of polish and although only partly patinated, it seems to represent a single period of working and is classed as a patinated core.

Fig. 4 shows the composition of the 37 patinated and 23 unpatinated cores. The patinated group has a very slightly higher proportion of cores with blade scars (25 out of 37; 67.6%) than the unpatinated group (14 out of 23; 60.9%), but the difference seems negligible, especially when considering the small numbers involved. Two periods of working can be seen on cores F11–F13, which are excluded from Fig. 4. They have both fresh and patinated flake scars, the former encroaching on the latter in two cases (F11 and F12). In their last use, F11 and F13 are of type A2 and F12 of type B3. The 60 intact cores are generally small with a mean weight of 25g.

Cores

\[\text{blade scars} \quad \text{blade & flake scars} \quad \text{flake scars}\]

A1 A2 B1 B2 B3 C D E T fig.

\[\text{Patinated} \quad \text{Unpatinated}\]

\[\text{Fig. 4} \quad \text{Patinated and unpatinated cores}\]

Hammerstones

Though no complete hammerstones were found, there are two flint hammerstone fragments, referred to above, and some of the cores and flakes show signs of battering.

Flakes

The 1,180 flakes are composed as follows: 8 flakes from hammerstones, 9 core rejuvenation flakes, 16 thinning flakes, 716 other broken flakes and 441 other intact flakes.

Core rejuvenation flakes At least nine flakes, seven of them patinated, seem to have been struck from the edges of core striking platforms (e.g. F14, F15). All nine are crested and eight are narrow and parallel-sided like the illustrated examples. The truncated scars are blade scars in the five cases where their form is at all clear. The small unpatinated scars at the butt of F15 seem to represent later damage.

Thinning flakes The dorsal surfaces of six flakes (five of them patinated) are covered with shallow, truncated flake scars, apparently produced by the removal of flakes with a soft hammer (e.g. F16, F17). This possible use of a soft hammer, together with the smallness of the scars, makes these flakes unlikely to have been struck from cores, or, indeed, from heavy implements like axes. They may, perhaps, be mis-hits in the manufacture of thin bifacial forms like missile heads, discoidal knives, or pieces like F35–F39.

Broken flakes Of the 121 unpatinated broken flakes, 42 (34.7%) seem to have been blades as their surviving parts are parallel-sided and relatively narrow. This percentage differs little from that for the 595 patinated broken flakes, 226 (38%) of which seem to have been blades.

Intact flakes Fig. 5 shows the proportions of the 441 intact flakes; their dimensions are shown in Fig. 6. The unpatinated flakes tend to be proportionately broader than the patinated ones, the commonest ranges of breadth to length ratios for the two groups being 3.5–4.5 and 2.5–3.5 respectively. Small blades occur in both the unpatinated and patinated groups and their size ranges are virtually identical.

Utilisation While the collection is too abraded for most traces of utilisation to be identified with any confidence, 14 flakes show the "Class A" utilisation distinguished by Smith amongst the Windmill Hill material, characterised by the removal of fine, regular squints at a steep angle. It occurs on three intact and seven broken patinated flakes and three intact and one broken unpatinated flakes (e.g. F18, F19, F20).

Retouched pieces

The 79 retouched pieces consist of: 14 microliths and related forms (F21–F32), 2 missile heads (F33, F34), 5 other bifaces (F35–F39), 26 scrapers (F40–F55), 6 borers (F56–F60), 2 knives (F61, F62), 1 denticulate (F63), 3 notches (F64, F65), 2 shouldeblade (F66, F67), 8 pieces with flat edge retouch (F68, F69), 7 pieces with abrupt retouch (F70–F72), 1 "fabricator" (F73), 1 chisel (F74) and 1 stone axe fragment (S1).

Microliths and related forms The 14 pieces in this group are patinated and vary in colour from light blue to white.
Missile heads These consist of one fragmentary unpatinated leaf-shaped arrowhead (F33) and one fragmentary lightly patinated barbed and tanged arrowhead (F34).

Other bifaces There are five bifacially flaked pieces, three unpatinated (F35–F37) and two patinated (F38, F39), which, from their size and general aspect seem most likely to be unfinished missile heads. F38 and F39 might conceivably be exceptionally flat worked-down keeled cores, but this cannot be true of F35 and F36, the first of which is made on a struck flake which seems to have been broken while being further worked and the second of which is made on a flake which retains cortex on one face and signs of thermal fracture on the other.

Scrapers The 26 scrapers are composed as follows: 15 end scrapers (e.g. F40–F49), 10 of them patinated; 3 side-end scrapers (e.g. F50), 2 of them patinated; 2 side scrapers (F51, F52), 1 patinated; 1 horseshoe scraper, i.e. with the scraper edge extending around both sides as well as the distal end (F53); 1 scraper on a thermal flake (F54); and 4 fragmentary scrapers (e.g. F55), 2 of them patinated.

The patinated scrapers are generally smaller than the unpatinated ones. Five of the patinated end-scrapers (e.g. F40–F42) are oblique-ended and, except for F42, made on blades or blade-like flakes. F41 and F42 have traces of possible utilisation along their left edges. Four of the remaining patinated end-scrapers, together with one unpatinated, are straight or square-ended, with more or less parallel sides, and of fairly uniform size (e.g. F43–F46); of these, F44 has abrupt retouch along its left edge in addition to its distal scraper edge. F47 is a patinated end-scaper itself made on an older, more heavily patinated flake. F48 is made on a patinated flake.

The two patinated side-end scrapers (e.g. F50) are of similar size to the patinated end-scrapers, but with more convex scraper edges.

The one patinated side scraper (F51) is again of similar size and is worked inversely.

Of the fragmentary scrapers, one patinated example (F55) is in the same small size range as F43–F47, F50 and F51; and one of the unpatinated examples is straight-edged.

Borers There is one awl (F56) in the conventional sense of a borer whose point is made by the removal of secondary flakes from more than one direction. It is made by relatively fresh retouch on the end of a patinated blade.

Piercers, conventionally defined as borers with their points made by the removal of secondary flakes from only one direction, are represented by three examples. F57 is made by inverse retouch on the tip of a cortical blade. F58 and an unillustrated example are made by abrupt retouch of all but one corner of the distal end of a small flake. Their resemblance to micro-burins is a superficial one, since the retouch runs from flake edge to flake edge without any signs of fracture. F59 is a piercer with its point formed by distal abrupt retouch and a lateral notch. F57 and F58 are unpatinated; the unillustrated parallel to F58 is made by fresh retouch on a patinated flake; F59 is patinated. F60, which is unpatinated, is a spurred flake, in the sense defined by Smith, with its spur in the middle of a scraper-like edge.

Knives F62 is a flake with shallow bilateral scale flaking converging to a point. There is no inverse working, the only flake removed from the bulbular surface being more recent, cutting through the light patina that
Fig. 7 F1–F13: cores; F14, F15: core rejuvenation flakes; F16, F17: thinning flakes; F18–F20: utilised flakes. Light, broken shading indicates patina.
Fig. 8 F21–F32: microliths and related forms; F33-F34: projectile points; F35-F39: bifaces; F40-F47: scrapers. Light, broken shading indicates patina.
covers the rest of the piece. F61 seems to be a larger, fragmentary example of the same type.

Denticulate

F63 is an unpatinated coarsely denticulated flake.

Notches

There is one patinated notch made on a flake (F64) in addition to two unpatinated ones, one on a flake and the other (F65) on a blade.

Shouldered blades

Both examples (F66, F67) have unilateral, unifacial retouch at the butt. F67, which is unpatinated and complete, has no undoubted retouch above the shoulder, though the small irregular flake scars on the left edge may perhaps represent retouch or wear. F66 is patinated and broken off just above the shoulder.

Pieces with flat edge retouch

These consist of five unpatinated pieces (e.g. F68) and three made by later retouch on patinated flakes (e.g. F69).

Pieces with abrupt retouch

In addition to the microliths and related forms described above there are three patinated and four unpatinated pieces. All the patinated examples are broken blades (e.g. F70, F71). The unpatinated examples comprise two blades (e.g. F72), a broken flake and a thermal flake.

Fabricator

F73, which is unpatinated, seems to be one end of a ‘fabricator’.

Chisel

F74 is an unpatinated end-polished flint chisel, with slightly squared sides in its polished part.

Axe flake

S1 is a flake from a polished stone tool, probably an axe. It appears, superficially, to be of group VI rock (Great Langdale tuff).

Possibly retouched pieces (F75–F77)

Twenty-seven flakes and blades, four of them unpatinated (e.g. F75), have doubtful retouch which seems incapable of whole-hearted acceptance as ancient and purposeful or dismissal as recent and accidental. In some cases this retouch is patinated, but it is more often relatively fresh, cutting pre-existing patina. None approaches a definite tool type and the ‘retouch’ generally seems slight and random, capable of production by various accidental means. On 16 of these pieces the ‘retouch’ simply runs along part of the flake edge (e.g. F76). On five, however, it seems to form bore-like points (e.g. F77). Given the presence in the collection of pieces with genuine reworking through patina (e.g. F11, F48), the ‘retouch’ on these pieces cannot be dismissed because of its freshness alone. Their status must remain doubtful.

AFFINITIES

Cores

The total composition of the 60 classifiable cores may be summarised as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>No.</th>
<th>%</th>
<th>No. with at least some blade scars</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>33.3</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>36.7</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td>39 (65%)</td>
</tr>
</tbody>
</table>

The relatively high percentage of class C (3 or more platform) cores in both patinated and unpatinated groups (Fig. 6) is unusual. Over lowland Britain as a whole, such cores rarely exceed 10% of the total in Mesolithic,[14] Neolithic and Early Bronze Age industries, A2 (incompletely flaked single platform) cores being generally the most numerous in the last two groups.[15] The percentages of both class B (2 platform) and class C cores from Anwick Fen are, however, paralleled in another multi-period collection made at Bourne Pool, Aldridge, Staffs, which similarly comprises both Mesolithic and later elements.[16] Small initial and final core size is common to the two collections and reflects the nature of the raw material available over most of the Midlands. The prevalence in both of multi-platform flaking may be a response to this limitation although, during the Mesolithic at least, it was not one which regularly occurred in the Midlands. Saville suggests that particular core types in the Bourne Pool collection may have resulted from the production of blanks for geometric microliths. Given the presence of F27 and F28, some of the Anwick Fen cores may have served the same purpose.

Flakes

The distribution of flake proportions is unimodal, despite the probability of the flakes being of varying ages and technological traditions. The commonest range, 2.5–3.5, is that of most earlier Neolithic industries,[17] including eastern English ones, like those of Broome Heath, Norfolk or area XIII, Pidholme Road, Fengate, Cambs.[18] This is not, however, necessarily indicative of earlier Neolithic date: Pits has shown the similarity of later Mesolithic and earlier Neolithic flake proportions.[19]

Despite the slightly greater tendency to broadness of the unpatinated flakes, which may have some archaeological significance, there is none of the preponderance of broad flakes (flakes broader than they are long) seen in its extreme form in some late Neolithic and early Bronze Age industries such as those of the West Kennet Avenue occupation site, Wils, or area I, Storey's Bar Road, Fengate.[20] The commonest proportion range among the unpatinated flakes, 3.5–4.5, which falls at the overlap between narrower-flaked later Neolithic industries, such as that from Ecton, Northants, and broader-flaked earlier Neolithic industries like that from Offham Hill, Sussex.[21] It is by no means certain, however, that the patinated and unpatinated groups of flakes represent two different periods of flint-working, not only because patination is an unreliable guide to date in the collection (see discussion below), but because the general trend towards broader flakes in later Neolithic and Bronze Age industries seems to have had exceptions, especially in industries associated with beaker pottery.[22] Leaf, for instance, records ‘numerous long thin flakes’ found with sherd of S2 beaker in a hearth under barrow V, Chippenham, Cambs.[23]

Retouched pieces

Microliths

The obliquely blunted points (F21–F23) and the isoceles triangle (F26) are of types that occur throughout the Mesolithic period.[24] Scalenal triangles like F27 and F28 are, however, known only from the later Mesolithic, starting in the early seventh millennium B.C.[25] The two kinds of point (F31, F32) are less readily dated. If F21–F32 represent a single episode, together probably with at least some of the cores, flakes and less diagnostic retouched pieces, F27 and F28 would place it in the later Mesolithic period.

Mistletoe heads

The leaf-shaped arrowhead (F33) is of a type generally considered typical of earlier Neolithic industries. Green’s study of British flint arrowheads shows that the form remained current into the early Bronze Age, although it appears extremely rarely in non-beaker later Neolithic contexts and not at all in later Bronze Age ones. The barbed and tanged arrowhead
Fig. 9 F48-F55: scrapers; F56-F60: awls, piercers and borers; F61, F62: knives; F63: denticulated flake; F64, F65: notched flake; F66, F67: shouldered blades; F68, F69: flakes with flat edge retouch; F70-F72: flakes with abrupt edge retouch; F73: 'fabricator'; F74: chisel; F75-F77: possibly retouched pieces; S1: stone axe flake.

Light, broken shading indicates patina.
(F34) remains a characteristic Beaker and early Bronze Age association. The five possible unfinished missile-heads (F35–F39) would also fit most readily into a Neolithic or early Bronze Age context.

Scrapers While convex scrapers are among the most ubiquitous of lithic implement types, a minority of the scrapers in the collection seem to be of relatively restricted affinities. The five oblique-ended scrapers (e.g. F40–F42) are of a form uncommon in Neolithic and Bronze Age contexts. They resemble the truncated pieces (F24, F25) and may form part of the Mesolithic element in the collection. A similar piece is illustrated by Clark from the Maglemosian site at Thatcham, Berks. Small, convex, ‘thumbnail’ scrapers, of which there are ten in the collection (e.g. F43–F47, F50, F51) are numerous only in some Mesolithic industries, like the series from Morton, Fife, and in much later industries associated with beaker pottery.

Borers The spurred flake (F60) is of a type consistently found in later Neolithic and early Bronze Age contexts, including the upper levels at Windmill Hill and an occupation deposit with predominantly S4 beaker found under a barrow at Reffley Wood, Norfolk.

Knives F61 and F62 are of a form reported from several industries associated with beaker pottery, such as those from the beaker layers of Outer Ditch II at Windmill Hill, and from the occupation complex at Hockwold-cum-Wilton, Norfolk.

Denticulate Pieces with coarse denticulations like those of F63 occur in a wide range of later Neolithic and early and later Bronze Age contexts. Examples include keeled denticulated flakes recorded by Wainwright and Longworth from industries associated with grooved ware and unecked denticulates found with beaker pottery at Martlesham Heath, Suffolk, and Penget, Camb.

Shouldered blades F66 and F67 are difficult to parallel. They are less elaborately worked than the bilaterally and sometimes bifacially retouched tanged and shouldered blades reported from industries associated with grooved ware at Durrington Walls, Wiltshire, and area I, Storey’s Bar Road, Fenge, Cambs. These pieces similar to F66 and F67 formed part of a predominantly earlier Neolithic group of material excavated from a shaft at Brampton, Norfolk.

‘Fabricator’ F73 seems to be a fragment of the kind of relatively flat, edge-retouched ‘fabricator’ identified by Smith among the material from the upper levels and surface at Windmill Hill, and suggested by her as a late Neolithic type. The form seems confined to later Neolithic and early Bronze Age contexts, including occupation sites with predominantly beaker pottery at Plantation Farm, Camb, and Hockwold-cum-Wilton, Norfolk. ‘Fabricators’ from Mesolithic and earlier Neolithic contexts tend to be steeper in section and to be flaked over most of the dorsal surface.

Chisel F74 is more extensively polished than otherwise similar chisels published by Manby from grooved ware contexts on the Yorkshire Wolds. He suggests a broadly later Neolithic and early Bronze Age date for the type and notes the occurrence of comparable implements in later second millennium B.C. Vlaardingen contexts in the Netherlands.

Stone axe flake If S1 is indeed of group VI rock, it is

from a source which seems to have been exploited from the beginning of the third millennium B.C. to at least the first quarter of the second. The overwhelming majority of grouped stone axes from Lincolnshire are of group VI rock, and the Anwick Fen fragment forms part of a concentration of flint and stone axes around the edge of the Fens.

DISCUSSION Patination does not reflect accurately the relative age of pieces in the collection. The similar composition of the patinated and unpatinated cores and the lack of a sharp division between the proportions of the patinated and unpatinated flakes (Fig. 6) have already been noted. Although all the undoubtedly Mesolithic pieces (F21–F32) are patinated, they are unevenly so, and some possibly Mesolithic pieces are unpatinated, including a notched blade (F65) and a small blade with abrupt retouch (F72). Some later types, on the other hand, are patinated, notably the barbed and tanged arrowhead (F34), which has the same degree of patination as the largest obliquely blunted point (F21). Of the five flat bifaces, three (F35–F37) are unpatinated and two (F38, F39) patinated. Similarly, of two shouldered blades, one (F67) is unpatinated and the other (F68) patinated. The incidence of patination seems to have depended on the individual depositional history of each piece. At most, Mesolithic pieces may be rather more frequently patinated because of the greater presence on the site has increased the likelihood of their being exposed to circumstances conducive to patination.

The near homogeneity of the waste is surprising in an obviously multi-period collection. Saville’s alternative interpretations for the similarly undifferentiated composition of the waste in the Bourne Pool collection may be relevant. He suggests either (1) that most of the waste is of Mesolithic date, the very small final blade scars on the cores resulting from the production of microlith blanks, while later activity resulted mainly in the abandonment of finished or partly finished tools; or (2) that in response to the small size of raw material available, successive occupants of the site produced similar flint waste, despite cultural and chronological disparities. Neither interpretation is wholly satisfactory. The second seems more applicable to Anwick Fen where some of the waste must almost certainly be of Neolithic or early Bronze Age date if single-piece missile heads were indeed made there. The slightly broader proportions of the unpatinated flakes (Fig. 5) may indicate they are relatively late, but this dating can only be viewed with caution, given the chronologically erratic incidence of patination in the collection.

Those retouched pieces which have restricted affinities may be ranged into two main groups: a Mesolithic group consisting of the microliths and related forms (F21–F32), and a later Neolithic/early Bronze Age group consisting of the barbed and tanged arrowhead (F34), the spurred flake (F60), the triangular knives (F61, F62), the denticulate (F63), the edge-retouched ‘fabricator’ (F73), and the chisel (F74), together, perhaps, with the stone axe flake (S1), the leaf-shaped arrowhead (F3) and the other bifaces (F35–F39). The sherds and some of the finer objects of the second group, notably the missile heads, the knives and the chisel, may have been plundered out from burial deposits in the barrows. There is, however, more than a suggestion of occupation in the probability of post-Mesolithic flint-working and in the undistinguished bulk of the collection, much of which is appropriate to a later Neolithic/early Bronze Age as of Mesolithic date. The two
implement groups are not necessarily to be equated with only two phases of activity. Like many other locations, on the Fen edge and elsewhere, the site may have been occupied or frequented many times over several millennia.

The partially buried barrow cemetery at Anwick is one of several similar examples found in recent years. At Washingborough a line of round barrows extends from the Fen margin into the fen where they disappear under the peat. The cemetery at Walscott is another example of this phenomenon and no doubt other sites will become visible as the peat wastes away through the lowering of the water table and intensive agriculture.64

Anwick presents a rare opportunity for the study of a buried landscape with associated funerary and settlement features and, as such, should be excavated or preserved for the benefit of future generations.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the Manpower Services Commission and the North Kesteven District Council for financing the survey. We are also indebted to Mr T. Dennis, the landowner, for permitting access to the site.

Various drafts of this report have been read and commented on by Brian Simmons, Jeffrey May and Alan Saville to whom we extend our thanks. Any errors or omissions remain the responsibility of the authors.

The Society is grateful to the Council for British Archaeology for a grant towards the publication of this article.

NOTES

3 South Lincolnshire Archaeological Unit Records.
4 This was the work of R. Siddaway and V. Ancillie. A section drawing of one of the barrows is illustrated in P. Chowne, Bronze Age Settlement in South Lincolnshire, in J. C. Barrett and R. Bradley (eds.), Society and Settlement in the British Late Bronze Age, British Archaeological Reports 83, 1980, p.302.
8 Clark et al., op. cit., p.233.
9 Ibid., p.225.
10 Smith, op. cit., p.105, F154.
13 Saville, op. cit., pp.9–18.
14 Healy, op. cit., vol. 1, pp.164–70.